
Applying Deep Deterministic Policy Gradient

(DDPG) to a Continuous Action Space Problem

aicompetence.org

August 4, 2024

1 Introduction

Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy actor-
critic algorithm that is particularly well-suited for continuous action spaces. In
this example, we demonstrate how to apply DDPG to control a pendulum using
the Pendulum-v1 environment from OpenAI Gym.

2 Environment Setup

The Pendulum-v1 environment is a classic problem where the goal is to swing
up a pendulum so that it stays upright. The state space includes the angle and
angular velocity of the pendulum, while the action space consists of a continuous
force applied to the pendulum.

3 DDPG Implementation

The DDPG algorithm is implemented using the stable-baselines3 library,
which provides a straightforward interface for applying reinforcement learning
algorithms.

4 Python Code

The following code demonstrates how to set up and train a DDPG agent to
solve the pendulum control problem:

Listing 1: DDPG applied to the Pendulum problem

import gym
from s t a b l e b a s e l i n e s 3 import DDPG
from s t a b l e b a s e l i n e s 3 . common . no i s e import NormalActionNoise
import numpy as np

1

Create the environment
env = gym.make(’Pendulum−v1 ’)

Define the ac t i on no i se (to encourage e x p l o r a t i on)
n ac t i on s = env . a c t i on spac e . shape [−1]
a c t i o n n o i s e = NormalActionNoise (mean=np . z e ro s (n a c t i on s) , sigma=0.1 ∗ np . ones (n a c t i on s))

Create the DDPG model
model = DDPG(”MlpPolicy” , env , a c t i o n n o i s e=ac t i on no i s e , verbose=1)

Train the agent
model . l e a rn (t o t a l t im e s t e p s =100000)

Save the model
model . save (”ddpg pendulum”)

Load the model
model = DDPG. load (”ddpg pendulum”)

Test the t ra ined agent
obs = env . r e s e t ()
for in range (1 000) :

act ion , s t a t e s = model . p r ed i c t (obs , d e t e rm i n i s t i c=True)
obs , reward , done , i n f o = env . s tep (ac t i on)
env . render ()
i f done :

obs = env . r e s e t ()

env . c l o s e ()

5 Explanation

• Environment Setup: The environment is created using the gym.make

function, which initializes the Pendulum-v1 environment.

• Action Noise: To encourage exploration, Gaussian noise is added to the
actions taken by the agent. This noise is parameterized by a mean and
standard deviation.

• Model Creation: The DDPG model is created using the MlpPolicy,
which defines a multi-layer perceptron policy. The model is trained by
interacting with the environment for 100,000 timesteps.

• Model Testing: After training, the model is saved and then reloaded for
testing. The agent interacts with the environment, and the pendulum’s

2

behavior is visualized using the env.render() function.

6 Conclusion

This example demonstrates how DDPG can be effectively applied to a contin-
uous action space problem. The pendulum problem serves as a fundamental
benchmark, and the same approach can be extended to more complex environ-
ments with continuous actions.

3

	Introduction
	Environment Setup
	DDPG Implementation
	Python Code
	Explanation
	Conclusion

